STANDARD DEVIATION CONCEPT CHART

These data sets have small* standard deviations	What do you notice about the data sets?	Create two data sets with small standard deviations.
$\begin{gathered} 2,3,3,4,5,5,6 \\ 80,82,82,84,86,88,89,90 \\ 113,114,117,118,118,119 \end{gathered}$		
These data sets have large* standard deviations	What do you notice about the data sets?	Create two data sets with large standard deviations.
$\begin{gathered} 2,22,32,45,80 \\ 42,68,79,85,102 \\ 110,225,375,560,1002 \end{gathered}$		
Each of these data sets has a standard deviation of zero	What do you notice about the data sets?	Create two data sets with standard deviations of zero.
$\begin{gathered} 2,2,2,2,2,2,2,2 \\ 85,85,85,85,85,85 \\ 121,121,121,121,121,121 \end{gathered}$		

What do the two data sets below have in common? What's different? Which has the larger standard deviation?

What do the two data sets below have in common? What's different?

1, 2, 3, 4, 5
$1,1,1,5,5$

1, 2, 3, 4, 5
$6,7,8,9,10$

Create 2 data sets that have the same means, but \quad Create 2 data sets that have different means, but different standard deviations.

Is it possible to create two data sets that have different ranges, but both have a standard deviation of zero? Justify your reasoning and give an example to support your answer.

